Comparative Study of Kriging and Support Vector Regression for Structural Engineering Applications
نویسندگان
چکیده
منابع مشابه
Support vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
متن کاملSupport Vector Machine for Regression and Applications to Financial Forecasting
The main purpose of this paper is to compare the support vector machine (SVM) developed by Vapnik with other techniques such as Backpropagation and Radial Basis Function (RBF) Networks for financial forecasting applications. The theory of the SVM algorithm is based on statistical learning theory. Training of SVMs leads to a quadratic programming (QP) problem. Preliminary computational results f...
متن کاملtransference of imagery: a comparative formalistic study of shakespeares hamlet and its two persian translations
هدف از این تحقیق بررسی انتقال صور خیال هملت در دو ترجمه ی فارسی آن از نظر فرمالیستی بود. برای بدست آوردن داده-های مورد نیاز، 130 نمونه استعاره، مجاز، ایهام، کنایه و پارادوکس در متن اصلی مشخص شده و سپس بر اساس مدل نیومارک (1998) برای ترجمه ی استعاره یا بطور کلی زبان مجاز با معادل های فارسی شان مقایسه گردیدند. این تحقیق بر آن بود تا روش های استفاده شده برای ترجمه هر کدام از انواع زبان مجاز ذکر شد...
15 صفحه اولA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
سال: 2018
ISSN: 2376-7642,2376-7642
DOI: 10.1061/ajrua6.0000950